Redox reactions and the influence of natural Mn oxides on Cr oxidation in a contaminated site in northern Italy: evidence from Cr stable-isotopes and EPR spectroscopy

نویسندگان

  • F. F. Marafatto
  • R. Petrini
  • C. Pinzino
  • E. Pezzetta
  • F. Slejko
  • A. Lutman
چکیده

Hexavalent chromium-contaminated groundwaters and sediments in northern Italy have been studied using the Cr stable-isotope systematics and electron spin resonance spectroscopy (ESR), in order to explore redox changes and soil-groundwater interactions. The isotopic data indicate a possible Cr(VI) source released into the environment from an industrial plant. EPR spectra on the sediments which constitute the aquifers show a broad asymmetric absorption due to coupled Fe(III) and coupled Cr(III) ions and a well resolved hyperfine structure due to manganese ions, resulting from Mn(IV) and Mn(II). The isotopic and EPR data support the hypothesis of Cr(III) being oxidized by Mn oxides which are widespread in the aquifer, possibly related to the oscillation of the phreatic level. The obtained results highlight the usefulness of chromium stable isotopes as environmental tracers and support the observations that naturally occurring Mn oxides in soils may catalize Cr oxidation from the stable Cr(III) form to the toxic Cr(VI) soluble form, yielding valuable information in planning remediation interventions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.

Manganese (Mn) oxides, which are generally considered biogenic in origin within natural systems, are the only oxidants of Cr(iii) under typical environmental conditions. Yet the influence of Mn biooxide mineral structural evolution on Cr(iii) oxidation under varying geochemical conditions is unknown. In this study we examined the role of light, organic carbon, pH, and the structure of biogenic ...

متن کامل

Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides.

A. General Introduction Among the transition metal ions of the 3d series, Cr takes a particular position because of its variability in oxidation state, coordination numbers and molecular structure.1,2 The elucidation of these Cr species on inorganic oxidic surfaces is a complex task, which is of fundamental importance to understanding the behavior of Cr in the environment, colloids, and Cr-base...

متن کامل

Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials.

Cr stable isotope measurements can provide improved estimates of the extent of Cr(VI) reduction to less toxic Cr(III). The relationship between observed (53)Cr/(52)Cr ratio shifts and the extent of reduction can be calibrated by determining the isotopic fractionation factor for relevant reactions. Permeable reactive barriers (PRB) made of Fe(0) and in situ redox manipulation (ISRM) zones effect...

متن کامل

Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS).

The initial kinetics of Cr(III) oxidation on mineral surfaces is poorly understood, yet a significant portion of the oxidation process occurs during the first seconds of reaction. In this study, the initial rates of Cr(III) oxidation on hydrous manganese oxide (HMO) were measured at three different pH values (pH 2.5, 3, and 3.5), using a quick X-ray absorption fine structure spectroscopy (Q-XAF...

متن کامل

Fe(II) reduction of pyrolusite (β-MnO2) and secondary mineral evolution

Iron (Fe) and manganese (Mn) are the two most common redox-active elements in the Earth's crust and are well known to influence mineral formation and dissolution, trace metal sequestration, and contaminant transformations in soils and sediments. Here, we characterized the reaction of aqueous Fe(II) with pyrolusite (β-MnO2) using electron microscopy, X-ray diffraction, aqueous Fe and Mn analyses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012